Source code for vissl.utils.hydra_config

# Copyright (c) Facebook, Inc. and its affiliates.

# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.

import logging
import pprint
import re
import sys
from typing import Any, List, Tuple

import torch
from omegaconf import DictConfig, OmegaConf
from vissl.config import AttrDict, check_cfg_version
from vissl.utils.io import save_file
from vissl.utils.misc import is_augly_available


[docs]def save_attrdict_to_disk(cfg: AttrDict): from vissl.utils.checkpoint import get_checkpoint_folder yaml_output_file = f"{get_checkpoint_folder(cfg)}/train_config.yaml" save_file(cfg.to_dict(), yaml_output_file)
[docs]def convert_to_attrdict( cfg: DictConfig, cmdline_args: List[Any] = None, dump_config: bool = True ): """ Given the user input Hydra Config, and some command line input options to override the config file: 1. merge and override the command line options in the config 2. Convert the Hydra OmegaConf to AttrDict structure to make it easy to access the keys in the config file 3. Also check the config version used is compatible and supported in vissl. In future, we would want to support upgrading the old config versions if we make changes to the VISSL default config structure (deleting, renaming keys) 4. We infer values of some parameters in the config file using the other parameter values. """ if cmdline_args: # convert the command line args to DictConfig sys.argv = cmdline_args cli_conf = OmegaConf.from_cli(cmdline_args) # merge the command line args with config cfg = OmegaConf.merge(cfg, cli_conf) # convert the config to AttrDict cfg = OmegaConf.to_container(cfg) cfg = AttrDict(cfg) # check the cfg has valid version check_cfg_version(cfg) # assert the config and infer config = cfg.config infer_and_assert_hydra_config(config) if dump_config: save_attrdict_to_disk(config) convert_fsdp_dtypes(config) return cfg, config
[docs]def convert_fsdp_dtypes(config: AttrDict): """ Transform configuration types (primitive types) to VISSL specific types """ # TODO (Quentin) - remove this once FSDP accepts a boolean if config["MODEL"]["FSDP_CONFIG"]["compute_dtype"] == "float32": config["MODEL"]["FSDP_CONFIG"]["compute_dtype"] = torch.float32 else: config["MODEL"]["FSDP_CONFIG"]["compute_dtype"] = torch.float16
[docs]def is_hydra_available(): """ Check if Hydra is available. Simply python import to test. """ try: import hydra # NOQA hydra_available = True except ImportError: hydra_available = False return hydra_available
[docs]def get_hydra_version() -> Tuple[int, ...]: import hydra return tuple(int(re.findall("\\d+", x)[0]) for x in hydra.__version__.split("."))
[docs]def assert_hydra_dependency(): """ Check if Hydra is available. Simply python import to test. Also verifies whether the version is up to date. """ min_hydra_version = (1, 0, 7) min_hydra_version_str = ".".join(str(x) for x in min_hydra_version) install_command = f"pip install hydra-core=={min_hydra_version_str}" assert is_hydra_available(), f"Make sure to install Hydra: {install_command}" upgrade_message = f"Please upgrade Hydra: {install_command}" assert get_hydra_version() >= min_hydra_version, upgrade_message
[docs]def compose_hydra_configuration(overrides: List[str]): """ Transform the list of overrides provided on the command line to an actual VISSL configuration by merging these overrides with the defaults configuration of VISSL """ assert_hydra_dependency() # Backward compatibility with previous hydra versions: # In Hydra 1.1 and above, the compose API is not experimental anymore if get_hydra_version() >= (1, 1, 0): from hydra import initialize_config_module, compose else: from hydra.experimental import initialize_config_module, compose # Compose the overrides with "vissl/config/defaults.yaml" with initialize_config_module(config_module="vissl.config"): return compose("defaults", overrides=overrides)
[docs]def resolve_linear_schedule(cfg, param_schedulers): """ For the given composite schedulers, for each linear schedule, if the training is 1 node only, the https://arxiv.org/abs/1706.02677 linear warmup rule has to be checked if the rule is applicable and necessary. We set the end_value = scaled_lr (assuming it's a linear warmup). In case only 1 machine is used in training, the start_lr = scaled_lr and then the linear warmup is not needed. """ # compute what should be the linear warmup start LR value. # this depends on batchsize per node. num_nodes = cfg.DISTRIBUTED.NUM_NODES num_gpus_per_node = cfg.DISTRIBUTED.NUM_PROC_PER_NODE bs_per_gpu = cfg.DATA.TRAIN.BATCHSIZE_PER_REPLICA batch_size_per_node = bs_per_gpu * num_gpus_per_node base_lr = param_schedulers.auto_lr_scaling.base_value base_lr_batch_size = param_schedulers.auto_lr_scaling.base_lr_batch_size scale_factor = float(batch_size_per_node) / base_lr_batch_size start_value = base_lr * scale_factor remove_linear_idx = -1 for idx in range(len(param_schedulers["schedulers"])): if param_schedulers["schedulers"][idx]["name"] == "linear": param_schedulers["schedulers"][idx]["start_value"] = start_value if num_nodes == 1: end_value = param_schedulers["schedulers"][idx]["end_value"] if start_value <= end_value: # linear schedule is not meaningful as linear warmup is not needed. remove_linear_idx = idx # check if linear warmup should be removed as its not meaningul if remove_linear_idx >= 0: del param_schedulers["schedulers"][remove_linear_idx] # if after removing linear warmup, there's only one scheduler, then a composite # schedule is no longer needed. The remaining scheduler becomes the primary # scheduler if len(param_schedulers["schedulers"]) == 1: for key, value in param_schedulers["schedulers"][0].items(): param_schedulers[key] = value return param_schedulers
[docs]def get_scaled_lr_scheduler(cfg, param_schedulers, scaled_lr): """ Scale learning rate value for different Learning rate types. See infer_learning_rate() for how the scaled LR is calculated. Values changed for learning rate schedules: 1. cosine: end_value = scaled_lr * (end_value / start_value) start_value = scaled_lr and 2. multistep: gamma = values[1] / values[0] values = [scaled_lr * pow(gamma, idx) for idx in range(len(values))] 3. step_with_fixed_gamma base_value = scaled_lr 4. linear: end_value = scaled_lr 5. inverse_sqrt: start_value = scaled_lr 6. constant: value = scaled_lr 7. composite: recursively call to scale each composition. If the composition consists of a linear schedule, we assume that a linear warmup is applied. If the linear warmup is applied, it's possible the warmup is not necessary if the global batch_size is smaller than the base_lr_batch_size and in that case, we remove the linear warmup from the schedule. """ if "cosine" in param_schedulers["name"]: start_value = param_schedulers["start_value"] end_value = param_schedulers["end_value"] decay_multiplier = end_value / start_value param_schedulers["start_value"] = float(scaled_lr) param_schedulers["end_value"] = float(scaled_lr * decay_multiplier) elif param_schedulers["name"] == "multistep" or param_schedulers["name"] == "step": values = param_schedulers["values"] gamma = 1.0 if len(values) > 1: gamma = round(values[1] / values[0], 6) new_values = [] for idx in range(len(values)): new_values.append(round(float(scaled_lr * pow(gamma, idx)), 8)) param_schedulers["values"] = new_values elif param_schedulers["name"] == "step_with_fixed_gamma": param_schedulers["base_value"] = scaled_lr elif param_schedulers["name"] == "composite": has_linear_warmup = False for idx in range(len(param_schedulers["schedulers"])): if param_schedulers["schedulers"][idx]["name"] == "linear": has_linear_warmup = True scheduler = get_scaled_lr_scheduler( cfg, param_schedulers["schedulers"][idx], scaled_lr ) param_schedulers["schedulers"][idx] = scheduler # in case of composite LR schedule, if there's linear warmup specified, # we check if the warmup is meaningful or not. If not, we simplify the # schedule. if has_linear_warmup: resolve_linear_schedule(cfg, param_schedulers) elif param_schedulers["name"] == "linear": param_schedulers["end_value"] = scaled_lr elif param_schedulers["name"] == "inverse_sqrt": param_schedulers["start_value"] = scaled_lr elif param_schedulers["name"] == "constant": param_schedulers["value"] = scaled_lr else: raise RuntimeError( f"Unknow param_scheduler: {param_schedulers['name']}. NOT scaling linearly" ) return param_schedulers
[docs]def infer_learning_rate(cfg): """ 1) Assert the Learning rate here. LR is scaled as per https://arxiv.org/abs/1706.02677. to turn this automatic scaling off, set config.OPTIMIZER.param_schedulers.lr.auto_lr_scaling.auto_scale=false scaled_lr is calculated: given base_lr_batch_size = batch size for which the base learning rate is specified, base_value = base learning rate value that will be scaled, The current batch size is used to determine how to scale the base learning rate value. scale_factor = (batchsize_per_gpu * world_size) / base_lr_batch_size if scaling_type is sqrt, scale factor = sqrt(scale_factor) scaled_lr = scale_factor * base_value We perform this auto-scaling for head learning rate as well if user wants to use a different learning rate for the head 2) infer the model head params weight decay: if the head should use a different weight decay value than the trunk. If using different weight decay value for the head, set here. otherwise, the same value as trunk will be automatically used. """ if cfg.OPTIMIZER.param_schedulers.lr.auto_lr_scaling.auto_scale: world_size = cfg.DISTRIBUTED.NUM_NODES * cfg.DISTRIBUTED.NUM_PROC_PER_NODE batch_size = cfg.DATA.TRAIN.BATCHSIZE_PER_REPLICA * world_size param_schedulers = cfg.OPTIMIZER.param_schedulers.lr base_lr = param_schedulers.auto_lr_scaling.base_value base_lr_batch_size = param_schedulers.auto_lr_scaling.base_lr_batch_size scaling_type = param_schedulers.auto_lr_scaling.scaling_type assert scaling_type in [ "sqrt", "linear", ], "Only linear | sqrt scaling_types are supported" scale_factor = float(batch_size) / base_lr_batch_size if scaling_type == "sqrt": scale_factor = scale_factor ** 0.5 scaled_lr = base_lr * scale_factor cfg.OPTIMIZER.param_schedulers.lr = get_scaled_lr_scheduler( cfg, param_schedulers, scaled_lr ) if not cfg.OPTIMIZER.head_optimizer_params.use_different_lr: # if not using the different value for the head, we set the weight decay and LR # param scheduler same as the trunk. cfg.OPTIMIZER.param_schedulers.lr_head = cfg.OPTIMIZER.param_schedulers.lr elif ( cfg.OPTIMIZER.head_optimizer_params.use_different_lr and cfg.OPTIMIZER.param_schedulers.lr_head and cfg.OPTIMIZER.param_schedulers.lr_head.auto_lr_scaling.auto_scale ): # if the user wants a different LR value for the head, then we # automatically infer the LR values for the head as well (similar to # trunk above) world_size = cfg.DISTRIBUTED.NUM_NODES * cfg.DISTRIBUTED.NUM_PROC_PER_NODE batch_size = cfg.DATA.TRAIN.BATCHSIZE_PER_REPLICA * world_size param_schedulers = cfg.OPTIMIZER.param_schedulers.lr_head base_lr = param_schedulers.auto_lr_scaling.base_value base_lr_batch_size = param_schedulers.auto_lr_scaling.base_lr_batch_size scaling_type = param_schedulers.auto_lr_scaling.scaling_type assert scaling_type in [ "sqrt", "linear", ], "Only linear | sqrt scaling_types are supported" scale_factor = float(batch_size) / base_lr_batch_size if scaling_type == "sqrt": scale_factor = scale_factor ** 0.5 scaled_lr = base_lr * scale_factor cfg.OPTIMIZER.param_schedulers.lr_head = get_scaled_lr_scheduler( cfg, param_schedulers, scaled_lr ) # for the head, if we want to use a different weight decay value, # we verify that the specified weight decay value is valid. Otherwise, # we do the inference and set the weight decay value same as the trunk. if not cfg.OPTIMIZER.head_optimizer_params.use_different_wd: cfg.OPTIMIZER.head_optimizer_params.weight_decay = cfg.OPTIMIZER.weight_decay else: assert ( cfg.OPTIMIZER.head_optimizer_params.weight_decay >= 0.0 ), "weight decay for head should be >=0" return cfg
[docs]def infer_losses_config(cfg): """ Infer settings for various self-supervised losses. Takes care of setting various loss parameters correctly like world size, batch size per gpu, effective global batch size, collator etc. Each loss has additional set of parameters that can be inferred to ensure smooth training in case user forgets to adjust all the parameters. """ train_transforms = cfg.DATA.TRAIN.TRANSFORMS total_num_crops = next( ( transform["total_num_crops"] for transform in train_transforms if "total_num_crops" in transform ), None, ) # some inference for the Info-NCE loss. if "simclr_info_nce_loss" in cfg.LOSS.name: cfg.LOSS[cfg.LOSS.name]["buffer_params"]["world_size"] = ( cfg.DISTRIBUTED.NUM_NODES * cfg.DISTRIBUTED.NUM_PROC_PER_NODE ) world_size = cfg.LOSS[cfg.LOSS.name]["buffer_params"]["world_size"] batch_size = cfg.DATA.TRAIN.BATCHSIZE_PER_REPLICA num_positives = 2 # simclr uses 2 copies per image cfg.LOSS[cfg.LOSS.name]["buffer_params"]["effective_batch_size"] = ( num_positives * batch_size * world_size ) # bce_logits_multiple_output_single_target if cfg.LOSS.name == "bce_logits_multiple_output_single_target": world_size = cfg.DISTRIBUTED.NUM_NODES * cfg.DISTRIBUTED.NUM_PROC_PER_NODE cfg.LOSS.bce_logits_multiple_output_single_target.world_size = world_size # multicrop version of simclr loss if cfg.LOSS.name == "multicrop_simclr_info_nce_loss": world_size = cfg.LOSS.multicrop_simclr_info_nce_loss.buffer_params.world_size batch_size = cfg.DATA.TRAIN.BATCHSIZE_PER_REPLICA cfg.LOSS.multicrop_simclr_info_nce_loss.buffer_params.world_size = world_size cfg.LOSS.multicrop_simclr_info_nce_loss.buffer_params.effective_batch_size = ( batch_size * world_size ) cfg.LOSS.multicrop_simclr_info_nce_loss.num_crops = ( total_num_crops or cfg.LOSS.multicrop_simclr_info_nce_loss.num_crops ) cfg.DATA.TRAIN.COLLATE_FUNCTION = "multicrop_collator" # some inference for the DeepCluster-v2 loss. if cfg.LOSS.name == "deepclusterv2_loss": cfg.LOSS.deepclusterv2_loss.DROP_LAST = cfg.DATA.TRAIN.DROP_LAST cfg.LOSS.deepclusterv2_loss.BATCHSIZE_PER_REPLICA = ( cfg.DATA.TRAIN.BATCHSIZE_PER_REPLICA ) cfg.LOSS.deepclusterv2_loss.num_crops = ( total_num_crops or cfg.LOSS.deepclusterv2_loss.num_crops ) cfg.DATA.TRAIN.COLLATE_FUNCTION = "multicrop_collator" # some inference for the SwAV loss. if cfg.LOSS.name == "swav_loss": assert len(cfg.MODEL.HEAD.PARAMS) == 1 assert cfg.MODEL.HEAD.PARAMS[0][0] in {"swav_head", "swav_head_fsdp"} assert cfg.DATA.TRAIN.COLLATE_FUNCTION in [ "multicrop_collator", "multicrop_mixup_collator", "cutmixup_collator", ], ( "for swav loss, use either a collator from " "[multicrop_collator, multicrop_mixup_collator]" ) cfg.LOSS.swav_loss.num_prototypes = cfg.MODEL.HEAD.PARAMS[0][1]["num_clusters"] cfg.LOSS.swav_loss.embedding_dim = cfg.MODEL.HEAD.PARAMS[0][1]["dims"][-1] cfg.LOSS.swav_loss.num_crops = total_num_crops or cfg.LOSS.swav_loss.num_crops from vissl.utils.checkpoint import get_checkpoint_folder cfg.LOSS.swav_loss.output_dir = get_checkpoint_folder(cfg) world_size = cfg.DISTRIBUTED.NUM_NODES * cfg.DISTRIBUTED.NUM_PROC_PER_NODE batch_size = cfg.DATA.TRAIN.BATCHSIZE_PER_REPLICA batch_size *= world_size queue_length = cfg.LOSS.swav_loss.queue.queue_length queue_length -= queue_length % batch_size cfg.LOSS.swav_loss.queue.queue_length = queue_length cfg.LOSS.swav_loss.queue.local_queue_length = queue_length // world_size # some inference for the SwAV momentum loss. if cfg.LOSS.name == "swav_momentum_loss": assert len(cfg.MODEL.HEAD.PARAMS) == 1 assert cfg.MODEL.HEAD.PARAMS[0][0] == "swav_head" cfg.LOSS.swav_momentum_loss.num_prototypes = cfg.MODEL.HEAD.PARAMS[0][1][ "num_clusters" ] cfg.LOSS.swav_momentum_loss.embedding_dim = cfg.MODEL.HEAD.PARAMS[0][1]["dims"][ -1 ] cfg.LOSS.swav_momentum_loss.num_crops = ( total_num_crops or cfg.LOSS.swav_momentum_loss.num_crops ) cfg.DATA.TRAIN.COLLATE_FUNCTION = "multicrop_collator" world_size = cfg.DISTRIBUTED.NUM_NODES * cfg.DISTRIBUTED.NUM_PROC_PER_NODE batch_size = cfg.DATA.TRAIN.BATCHSIZE_PER_REPLICA batch_size *= world_size queue_length = cfg.LOSS.swav_momentum_loss.queue.queue_length queue_length -= queue_length % batch_size cfg.LOSS.swav_momentum_loss.queue.queue_length = queue_length cfg.LOSS.swav_momentum_loss.queue.local_queue_length = ( queue_length // world_size ) # some inference for DINO loss. if cfg.LOSS.name == "dino_loss": assert len(cfg.MODEL.HEAD.PARAMS) == 1 assert cfg.MODEL.HEAD.PARAMS[0][0] == "swav_head" cfg.LOSS.dino_loss.output_dim = cfg.MODEL.HEAD.PARAMS[0][1]["num_clusters"][0] cfg.LOSS.dino_loss.num_crops = total_num_crops or cfg.LOSS.dino_loss.num_crops cfg.DATA.TRAIN.COLLATE_FUNCTION = "multicrop_collator" return cfg
[docs]def assert_transforms(cfg): for transforms in [cfg.DATA.TRAIN.TRANSFORMS, cfg.DATA.TEST.TRANSFORMS]: for transform in transforms: if "transform_type" in transform: assert transform["transform_type"] in [None, "augly"] if transform["transform_type"] == "augly": assert is_augly_available(), "Please pip install augly."
[docs]def infer_fsdp(cfg): """ inference for the FSDP settings. Conditions are: 1) use the FSDP task 2) use the single param group in the optimizer 3) if AMP is used, it must be PyTorch AMP 4) If training SwAV, we automatically set the head to SwAV FSDP head 4) Inference for the FSDP parameters to ensure the good convergence """ if cfg.MODEL.FSDP_CONFIG.AUTO_SETUP_FSDP: cfg.TRAINER.TASK_NAME = "self_supervision_fsdp_task" cfg.OPTIMIZER.construct_single_param_group_only = True # safely set flatten_parameters=True for FSDP trainings. cfg["MODEL"]["FSDP_CONFIG"]["flatten_parameters"] = True # recommended FSDP settings below for the convergence cfg["MODEL"]["FSDP_CONFIG"]["compute_dtype"] = "float32" # Inference of optimizer configuration if cfg["OPTIMIZER"]["use_larc"]: cfg["OPTIMIZER"]["name"] = "sgd_fsdp" # if using LARC, we set the flatten_params=False so that we can # compute the right params groups cfg["MODEL"]["FSDP_CONFIG"]["flatten_parameters"] = False # AMP based inference if cfg["MODEL"]["AMP_PARAMS"]["USE_AMP"]: cfg["MODEL"]["AMP_PARAMS"]["AMP_TYPE"] = "pytorch" cfg["MODEL"]["FSDP_CONFIG"]["mixed_precision"] = True # setup the compute_dtype and fp32_reduce_scatter # based on whether O1 or O2 is desired if cfg.MODEL.FSDP_CONFIG["AMP_TYPE"] == "O1": cfg["MODEL"]["FSDP_CONFIG"]["compute_dtype"] = "float32" cfg["MODEL"]["FSDP_CONFIG"]["fp32_reduce_scatter"] = True elif cfg.MODEL.FSDP_CONFIG["AMP_TYPE"] == "O2": cfg["MODEL"]["FSDP_CONFIG"]["compute_dtype"] = "float16" cfg["MODEL"]["FSDP_CONFIG"]["fp32_reduce_scatter"] = False else: # if not using AMP, we can't use mixed_precision as it requires PyTorch AMP cfg["MODEL"]["FSDP_CONFIG"]["mixed_precision"] = False # if mixed_precision=False, FSDP mandates setting fp32_reduce_scatter=False cfg["MODEL"]["FSDP_CONFIG"]["fp32_reduce_scatter"] = False # Inference of the head in case of training with FSDP for i, head_param in enumerate(cfg.MODEL.HEAD.PARAMS): if head_param[0] == "swav_head": cfg.MODEL.HEAD.PARAMS[i][0] = "swav_head_fsdp" if head_param[0] == "eval_mlp": cfg.MODEL.HEAD.PARAMS[i][0] = "eval_mlp_fsdp" if head_param[0] == "mlp": cfg.MODEL.HEAD.PARAMS[i][0] = "mlp_fsdp" # Inference of the trunk in case of training with FSDP if cfg.MODEL.TRUNK.NAME == "regnet": cfg.MODEL.TRUNK.NAME = "regnet_fsdp" # Profiling the communication requires some setup for FSDP if cfg.PROFILING.MEMORY_PROFILING.TRACK_BY_LAYER_MEMORY: cfg["MODEL"]["FSDP_CONFIG"]["_TRACK_COMMUNICATIONS"] = True logging.info(f"Using the FSDP config: {cfg.MODEL.FSDP_CONFIG}") # Delete the AUTO_SETUP_FSDP key since we send the FSDP_CONFIG # to FSDP from fairscale which doesn't know about AUTO_SETUP_FSDP del cfg.MODEL.FSDP_CONFIG["AUTO_SETUP_FSDP"] del cfg.MODEL.FSDP_CONFIG["AMP_TYPE"] return cfg
[docs]def infer_and_assert_hydra_config(cfg): """ Infer values of few parameters in the config file using the value of other config parameters 1. Inferring losses 2. Auto scale learning rate if user has specified auto scaling to be True. 3. Infer meter names (model layer name being evaluated) since we support list meters that have multiple output and same target. This is very common in self-supervised learning where we want to evaluate metric for several layers of the models. VISSL supports running evaluation for multiple model layers in a single training run. 4. Support multi-gpu DDP eval model by attaching a dummy parameter. This is particularly helpful for the multi-gpu feature extraction especially when the dataset is large for which features are being extracted. 5. Infer what kind of labels are being used. If user has specified a labels source, we set LABEL_TYPE to "standard" (also vissl default), otherwise if no label is specified, we set the LABEL_TYPE to "sample_index". """ cfg = infer_losses_config(cfg) cfg = infer_learning_rate(cfg) assert_transforms(cfg) # pass the seed to cfg["MODEL"] so that model init on different nodes can # use the same seed. # TODO (Min): once FSDP supports sync'ing weights from rank 0, we don't need # this anymore. cfg["MODEL"]["_MODEL_INIT_SEED"] = cfg.SEED_VALUE # in case of linear evaluation, we often evaluate several layers at a time. For each # layer, there's a separate accuracy meter. In such case, we want to output the layer # name in the meters output to make it easy to interpret the results. This is # currently only supported for cases where we have linear evaluation. if cfg.METERS is not None: from vissl.models import is_feature_extractor_model # Ensure backwards compatibility of cfg.METERS.name. meter_name = cfg.METERS.get("name", "") if meter_name: meter_names = set(cfg.METERS.get("names", [])) meter_names.add(meter_name) cfg.METERS.names = list(meter_names) meter_names = cfg.METERS.get("names", []) valid_meters = [ "accuracy_list_meter", "mean_ap_list_meter", "precision_at_k_list_meter", "recall_at_k_list_meter", ] for meter_name in meter_names: # Add appropriate meters for each feature extractor layer specified. if meter_name in valid_meters and is_feature_extractor_model(cfg.MODEL): cfg.METERS[meter_name]["num_meters"] = len( cfg.MODEL.FEATURE_EVAL_SETTINGS.LINEAR_EVAL_FEAT_POOL_OPS_MAP ) cfg.METERS[meter_name]["meter_names"] = [ item[0] for item in cfg.MODEL.FEATURE_EVAL_SETTINGS.LINEAR_EVAL_FEAT_POOL_OPS_MAP ] # in case of feature evaluation mode, we freeze the trunk. The Feature evaluation mode # is used for the feature extraction of trunk as well. VISSL supports distributed feature # extraction to speed up the extraction time. Since the model needs to be DDP for the # distributed extraction, we need some dummy parameters in the model otherwise model # can't be converted to DDP. So we attach some dummy head to the model. world_size = cfg.DISTRIBUTED.NUM_NODES * cfg.DISTRIBUTED.NUM_PROC_PER_NODE if ( cfg.MODEL.FEATURE_EVAL_SETTINGS.EVAL_MODE_ON and cfg.MODEL.FEATURE_EVAL_SETTINGS.FREEZE_TRUNK_ONLY and cfg.MODEL.FEATURE_EVAL_SETTINGS.EXTRACT_TRUNK_FEATURES_ONLY and world_size > 1 and len(cfg.MODEL.HEAD.PARAMS) == 0 ): cfg.MODEL.HEAD.PARAMS = [["mlp", {"dims": [2048, 1000]}]] # in SSL, during pre-training we don't want to use annotated labels or during feature # extraction, we don't have annotated labels for some datasets. In such cases, we set # the label type to be just the image index in the dataset, unless the # user has specifically provided "zero" as the label type, which is # necessary when the CutMixUp collator is being used for self-supervised # training. if len(cfg.DATA.TRAIN.LABEL_SOURCES) == 0 and cfg.DATA.TRAIN.LABEL_TYPE != "zero": cfg.DATA.TRAIN.LABEL_TYPE = "sample_index" if len(cfg.DATA.TEST.LABEL_SOURCES) == 0 and cfg.DATA.TEST.LABEL_TYPE != "zero": cfg.DATA.TEST.LABEL_TYPE = "sample_index" # if the user has specified the model initialization from a params_file, we check if # the params_file is a url. If it is, we download the file to a local cache directory # and use that instead from vissl.utils.checkpoint import get_checkpoint_folder from vissl.utils.io import cache_url, is_url if is_url(cfg.MODEL.WEIGHTS_INIT.PARAMS_FILE): checkpoint_dir = get_checkpoint_folder(cfg) cache_dir = f"{checkpoint_dir}/params_file_cache/" cached_url_path = cache_url( url=cfg.MODEL.WEIGHTS_INIT.PARAMS_FILE, cache_dir=cache_dir ) cfg.MODEL.WEIGHTS_INIT.PARAMS_FILE = cached_url_path # ZeRO2: Infer the settings for ShardedDDP which shards the optimizer state # and the model weights. For ShardedDDP, we must use the OSS optimizer, # set the right task name, use the PyTorch AMP if AMP is used. if cfg.MODEL.SHARDED_DDP_SETUP.USE_SDP: cfg.OPTIMIZER.use_zero = True cfg.TRAINER.TASK_NAME = "self_supervision_sdp_task" if cfg.MODEL.AMP_PARAMS.USE_AMP: cfg.MODEL.AMP_PARAMS.AMP_TYPE = "pytorch" # if we use a zero optimizer, we nest the optimizer related settings under the # base_optimizer. if cfg.OPTIMIZER.use_zero: cfg.OPTIMIZER["base_optimizer"] = cfg.OPTIMIZER.copy() cfg.OPTIMIZER.name = "zero" del cfg.OPTIMIZER.base_optimizer["param_schedulers"] del cfg.OPTIMIZER.base_optimizer["regularize_bn"] del cfg.OPTIMIZER.base_optimizer["regularize_bias"] del cfg.OPTIMIZER.base_optimizer["num_epochs"] del cfg.OPTIMIZER.base_optimizer["use_zero"] del cfg.OPTIMIZER.base_optimizer["head_optimizer_params"] # Infer fsdp settings cfg = infer_fsdp(cfg) if cfg.DATA.TRAIN.BASE_DATASET == "generic_ssl": assert ( cfg.DATA.TRAIN.get("TRAIN_PHASES_PER_EPOCH", 1) == 1 ), "When using the generic_ssl, we must set TRAIN_PHASES_PER_EPOCH = 1." if cfg.METERS.model_output_mask: assert ( len(cfg.DATA.TEST.DATA_SOURCES) > 0 ), "Model output mask is only applicable when there is a test dataset." assert ( cfg.DATA.TEST.BASE_DATASET == "generic_ssl" ), "Model output mask is only supported with ssl dataset." # Remove CHECK_NAN hooks, as model output masking casts the logits # to -inf, which will throw an error from the CHECK_NAN hooks. cfg.HOOKS.CHECK_NAN = False